Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 433, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594380

RESUMEN

Lung tissue resident memory (TRM) cells are thought to play crucial roles in lung host defense. We have recently shown that immunization with the adjuvant LTA1 (derived from the A1 domain of E. coli heat labile toxin) admixed with OmpX from K. pneumoniae can elicit antigen specific lung Th17 TRM cells that provide serotype independent immunity to members of the Enterobacteriaceae family. However, the upstream requirements to generate these cells are unclear. Single-cell RNA-seq showed that vaccine-elicited Th17 TRM cells expressed high levels of IL-1R1, suggesting that IL-1 family members may be critical to generate these cells. Using a combination of genetic and antibody neutralization approaches, we show that Th17 TRM cells can be generated independent of caspase-1 but are compromised when IL-1α is neutralized. Moreover IL-1α could serve as a molecular adjuvant to generate lung Th17 TRM cells independent of LTA1. Taken together, these data suggest that IL-1α plays a major role in vaccine-mediated lung Th17 TRM generation.


Asunto(s)
Escherichia coli , Vacunas , Memoria Inmunológica , Inmunización , Adyuvantes Inmunológicos/farmacología
2.
Ann Am Thorac Soc ; 20(8): 1077-1087, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37526479

RESUMEN

Rationale: To identify barriers and opportunities for Ph.D., basic and translational scientists to be fully integrated into clinical units. Objectives: In 2022, an ad hoc committee of the American Thoracic Society developed a project proposal and workshop to identify opportunities and barriers for scientists who do not practice medicine to develop successful careers and achieve tenure-track faculty positions in clinical departments and divisions within academic medical centers (AMCs) in the United States. Methods: This document focuses on results from a survey of adult and pediatric pulmonary, critical care, and sleep medicine division chiefs as well as a survey of workshop participants, including faculty in departmental and school leadership roles in both basic science and clinical units within U.S. AMCs. Results: We conclude that full integration of non-clinically practicing basic and translational scientists into the clinical units, in addition to their traditional placements in basic science units, best serves the tripartite mission of AMCs to provide care, perform research, and educate the next generation. Evidence suggests clinical units do employ Ph.D. scientists in large numbers, but these faculty are often hired into non-tenure track positions, which do not provide the salary support, start-up funds, research independence, or space often associated with hiring in basic science units within the same institution. These barriers to success of Ph.D. faculty in clinical units are largely financial. Conclusions: Our recommendation is for AMCs to consider and explore some of our proposed strategies to accomplish the goal of integrating basic and translational scientists into clinical units in a meaningful way.


Asunto(s)
Centros Médicos Académicos , Médicos , Adulto , Estados Unidos , Humanos , Niño , Selección de Personal , Liderazgo , Docentes Médicos
3.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35917185

RESUMEN

Pneumocystis is the most common fungal pulmonary infection in children under the age of 5 years. In children with primary immunodeficiency, Pneumocystis often presents at 3-6 months of age, a time period that coincides with the nadir of maternal IgG and when IgM is the dominant Ig isotype. Because B cells are the dominant antigen-presenting cells for Pneumocystis, we hypothesized the presence of fungal-specific IgMs in humans and mice and that these IgM specificities would predict T cell antigens. We detected fungal-specific IgMs in human and mouse sera and utilized immunoprecipitation to determine whether any antigens were similar across donors. We then assessed T cell responses to these antigens and found anti-Pneumocystis IgM in WT mice, Aicda-/- mice, and in human cord blood. Immunoprecipitation of Pneumocystis murina with human cord blood identified shared antigens among these donors. Using class II MHC binding prediction, we designed peptides with these antigens and identified robust peptide-specific lung T cell responses after P. murina infection. After mice were immunized with 2 of the antigens, adoptive transfer of vaccine-elicited CD4+ T cells showed effector activity, suggesting that these antigens contain protective Pneumocystis epitopes. These data support the notion that germline-encoded IgM B cell receptors are critical in antigen presentation and T cell priming in early Pneumocystis infection.


Asunto(s)
Linfocitos T CD4-Positivos , Neumonía por Pneumocystis , Animales , Niño , Preescolar , Células Germinativas , Humanos , Inmunoglobulina M , Pulmón , Ratones
4.
Sci Immunol ; 6(63): eabf1198, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516780

RESUMEN

Tissue-resident memory (TRM) cells are thought to play a role in lung mucosal immunity to pathogens, but strategies to elicit TRM by mucosal vaccines have not yet been fully realized. Here, we formulated a vaccine composed of outer membrane protein (Omp) X from Klebsiella pneumoniae and LTA1 adjuvant that was administered by the intrapulmonary route. This vaccine elicited both TH1 and TH17 cells that shared transcriptional features with cells elicited by heat-killed K. pneumoniae. Antibody responses were required to prevent bacterial dissemination but dispensable for lung-specific immunity. In contrast, lung immunity required CD4+ T cells, STAT3 expression, and IL-17R signaling in fibroblasts. Lung-specific CD4+ T cells from OmpX+LTA1­immunized mice were observed homing to the lung and could mediate protection against infection in an adoptive transfer model. Vaccine-elicited TH17 cells showed reduced plasticity and were resistant to the immunosuppressant FK506 compared with TH1 cells, and TH17 cells conferred protection under conditions of transplant immunosuppression. These data demonstrate a promising vaccine strategy that elicits lung TRM cells and promotes serotype-independent immunity to K. pneumoniae.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Klebsiella pneumoniae/inmunología , Pulmón/inmunología , Receptores de Interleucina-17/inmunología , Vacunas/inmunología , Animales , Fibroblastos/inmunología , Inmunidad Mucosa/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
5.
Front Immunol ; 12: 672523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968082

RESUMEN

Lower respiratory infections are among the leading causes of morbidity and mortality worldwide. These potentially deadly infections are further exacerbated due to the growing incidence of antimicrobial resistance. To combat these infections there is a need to better understand immune mechanisms that promote microbial clearance. This need in the context of lung infections has been further heightened with the emergence of SARS-CoV-2. Group 3 innate lymphoid cells (ILC3s) are a recently discovered tissue resident innate immune cell found at mucosal sites that respond rapidly in the event of an infection. ILC3s have clear roles in regulating mucosal immunity and tissue homeostasis in the intestine, though the immunological functions in lungs remain unclear. It has been demonstrated in both viral and bacterial pneumonia that stimulated ILC3s secrete the cytokines IL-17 and IL-22 to promote both microbial clearance as well as tissue repair. In this review, we will evaluate regulation of ILC3s during inflammation and discuss recent studies that examine ILC3 function in the context of both bacterial and viral pulmonary infections.


Asunto(s)
COVID-19/inmunología , Inmunidad Mucosa/inmunología , Linfocitos/inmunología , Neumonía Bacteriana/inmunología , Mucosa Respiratoria/inmunología , SARS-CoV-2/inmunología , Bacterias/inmunología , COVID-19/mortalidad , COVID-19/patología , Inmunidad Innata/inmunología , Inflamación/inmunología , Interleucina-17/metabolismo , Interleucinas/metabolismo , Pulmón/inmunología , Activación de Linfocitos/inmunología , Mucosa Respiratoria/citología
7.
Carbohydr Res ; 428: 31-40, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27131125

RESUMEN

Neuraminidases hydrolytically remove sialic acids from glycoconjugates. Neuraminidases are produced by both humans and their pathogens, and function in normal physiology and in pathological events. Identification of neuraminidase substrates is needed to reveal their mechanism of action, but high-throughput methods to determine glycan specificity of neuraminidases are limited. Here we use two glycan labeling reactions to monitor neuraminidase activity toward glycan substrates. While both periodate oxidation and aniline-catalyzed oxime ligation (PAL) and galactose oxidase and aniline-catalyzed oxime ligation (GAL) can be used to monitor neuraminidase activity toward glycans in microtiter plates, only GAL accurately measured neuraminidase activity toward glycans displayed on a commercial glass slide microarray. Using GAL, we confirm known linkage specificities of three pneumococcal neuraminidases and obtain new information about underlying glycan specificity.


Asunto(s)
Análisis por Micromatrices/métodos , Neuraminidasa/metabolismo , Polisacáridos/metabolismo , Streptococcus pneumoniae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Neuraminidasa/genética , Polisacáridos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado , Streptococcus pneumoniae/genética , Especificidad por Sustrato
8.
Bioconjug Chem ; 27(4): 1013-22, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26954852

RESUMEN

Neuraminidases (sialidases) are enzymes that hydrolytically remove sialic acid from sialylated proteins and lipids. Neuraminidases are encoded by a range of human pathogens, including bacteria, viruses, fungi, and protozoa. Many pathogen neuraminidases are virulence factors, indicating that desialylation of host glycoconjugates can be a critical step in infection. Specifically, desialylation of host cell surface glycoproteins can enable these molecules to function as pathogen receptors or can alter signaling through the plasma membrane. Despite these critical effects, no unbiased approaches exist to identify glycoprotein substrates of neuraminidases. Here, we combine previously reported glycoproteomics methods with quantitative proteomics analysis to identify glycoproteins whose sialylation changes in response to neuraminidase treatment. The two glycoproteomics methods-periodate oxidation and aniline-catalyzed oxime ligation (PAL) and galactose oxidase and aniline-catalyzed oxime ligation (GAL)-rely on chemoselective labeling of sialylated and nonsialylated glycoproteins, respectively. We demonstrated the utility of the combined approaches by identifying substrates of two pneumococcal neuraminidases in a human cell line that models the blood-brain barrier. The methods deliver complementary lists of neuraminidase substrates, with GAL identifying a larger number of substrates than PAL (77 versus 17). Putative neuraminidase substrates were confirmed by other methods, establishing the validity of the approach. Among the identified substrates were host glycoproteins known to function in bacteria adherence and infection. Functional assays suggest that multiple desialylated cell surface glycoproteins may act together as pneumococcus receptors. Overall, this method will provide a powerful approach to identify glycoproteins that are desialylated by both purified neuraminidases and intact pathogens.


Asunto(s)
Neuraminidasa/metabolismo , Proteómica , Streptococcus pneumoniae/enzimología , Especificidad por Sustrato
9.
ACS Chem Biol ; 11(1): 185-92, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26541974

RESUMEN

Sialic-acid-mediated interactions play critical roles on the cell surface, providing an impetus for the development of methods to study this important monosaccharide. In particular, photo-cross-linking sialic acids incorporated onto cell surfaces have allowed covalent capture of transient interactions between sialic acids and sialic-acid-recognizing proteins via cross-linking. However, natural sialic acids also present on the cell surface compete with photo-cross-linking sialic acids in binding events, limiting cross-linking yields. In order to improve the utility of one such photo-cross-linking sialic acid, SiaDAz, we examined a number of sialidases, enzymes that remove sialic acids from glycoconjugates, to find one that would cleave natural sialic acids but remain inactive toward SiaDAz. Using this sialidase, we improved SiaDAz-mediated cross-linking of an antisialyl Lewis X antibody and of endoglin. This protocol can be applied generally to sialic-acid-mediated interactions and will facilitate identification of sialic acid binding partners.


Asunto(s)
Diazometano/química , Glicoproteínas/química , Neuraminidasa/química , Neuraminidasa/metabolismo , Ácidos Siálicos/química , Anticuerpos/metabolismo , Antígenos CD/metabolismo , Bacterias/enzimología , Células Cultivadas , Reactivos de Enlaces Cruzados/química , Endoglina , Humanos , Receptores de Superficie Celular/metabolismo , Especificidad por Sustrato
10.
Elife ; 4: e09545, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26512888

RESUMEN

Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera.


Asunto(s)
Toxina del Cólera/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Gangliósido G(M1)/metabolismo , Glicosilación , Humanos , Unión Proteica
11.
Glycoconj J ; 32(7): 515-29, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25957566

RESUMEN

Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE.


Asunto(s)
Glicoconjugados/metabolismo , Hexosaminas/metabolismo , Ingeniería Metabólica , Ácido N-Acetilneuramínico/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Línea Celular , Diazometano/química , Esterasas/química , Esterasas/metabolismo , Citometría de Flujo , Glicoconjugados/química , Hexosaminas/química , Humanos , Ácido N-Acetilneuramínico/química , Oligosacáridos/química , Oligosacáridos/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(45): 18471-6, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091012

RESUMEN

Infection with the hepatitis B virus (HBV) promotes the development of hepatitis, cirrhosis, and hepatocellular carcinoma (HCC) and is a leading cause of morbidity and mortality worldwide. HBV X protein (HBx) is an important effector for HBV pathogenesis, but its cellular targets and acting mechanisms remain elusive. We show here that HBx interacts with the anti-apoptotic proteins Bcl-2 and Bcl-xL through a Bcl-2 homology 3 (BH3)-like motif in mammalian cells. Importantly, mutations in the BH3-like motif that prevent HBx binding to Bcl-2 and Bcl-xL abrogate cytosolic calcium elevation and cell death induced by HBx expression in hepatocytes and severely impair HBV viral replication, which can be substantially rescued by restoring cytosolic calcium. These results suggest that HBx binding to Bcl-2 family members and subsequent elevation of cytosolic calcium are important for HBV viral replication. Consistently, RNAi knockdown of Bcl-2 or Bcl-xL results in reduced calcium elevation by HBx and decreased viral replication in hepatocytes. Our results suggest that HBx targets Bcl-2 proteins through its BH3-like motif to promote cytosolic calcium elevation, cell death, and viral replication during HBV pathogenesis, which presents an excellent therapeutic intervention point in treating patients with chronic HBV.


Asunto(s)
Calcio/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Espacio Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transactivadores/metabolismo , Replicación Viral/fisiología , Secuencias de Aminoácidos , Animales , Muerte Celular , Citosol/metabolismo , Células Hep G2 , Virus de la Hepatitis B/fisiología , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Transactivadores/química , Proteínas Reguladoras y Accesorias Virales , Proteína bcl-X/metabolismo
13.
ACS Chem Biol ; 7(9): 1509-14, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22704707

RESUMEN

Sialidases hydrolytically remove sialic acids from sialylated glycoproteins and glycolipids. Sialidases are widely distributed in nature and sialidase-mediated desialylation is implicated in normal and pathological processes. However, mechanisms by which sialidases exert their biological effects remain obscure, in part because sialidase substrate preferences are poorly defined. Here we report the design and implementation of a sialidase substrate specificity assay based on chemoselective labeling of sialosides. We show that this assay identifies components of glycosylated substrates that contribute to sialidase specificity. We demonstrate that specificity of sialidases can depend on structure of the underlying glycan, a characteristic difficult to discern using typical sialidase assays. Moreover, we discovered that Streptococcus pneumoniae sialidase NanC strongly prefers sialosides containing the Neu5Ac form of sialic acid versus those that contain Neu5Gc. We propose using this approach to evaluate sialidase preferences for diverse potential substrates.


Asunto(s)
Arthrobacter/enzimología , Neuraminidasa/metabolismo , Polisacáridos/metabolismo , Salmonella typhimurium/enzimología , Ácidos Siálicos/metabolismo , Streptococcus pneumoniae/enzimología , Arthrobacter/química , Secuencia de Carbohidratos , Humanos , Datos de Secuencia Molecular , Polisacáridos/química , Salmonella typhimurium/química , Ácidos Siálicos/química , Streptococcus pneumoniae/química , Especificidad por Sustrato
14.
Trends Biotechnol ; 29(3): 144-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21251723

RESUMEN

In the past 5-10 years, the power of the green fluorescent protein (GFP) and its numerous derivatives has been harnessed toward the development of genetically encoded fluorescent biosensors. These sensors are incorporated into cells or organisms as plasmid DNA, which leads the transcriptional and translational machinery of the cell to express a functional sensor. To date, over 100 different genetically encoded biosensors have been developed for targets as diverse as ions, molecules and enzymes. Such sensors are instrumental in providing a window into the real-time biochemistry of living cells and whole organisms, and are providing unprecedented insight into the inner workings of a cell.


Asunto(s)
Técnicas Biosensibles/métodos , Animales , Técnicas Biosensibles/instrumentación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos
15.
Nature ; 467(7313): 291-6, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20693986

RESUMEN

Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.


Asunto(s)
Alérgenos/química , Alérgenos/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Motivos EF Hand , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Alérgenos/genética , Secuencia de Aminoácidos , Antígenos de Plantas , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión , Respiración de la Célula , Citoplasma/metabolismo , ADN Mitocondrial/análisis , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Homeostasis , Humanos , Potenciales de la Membrana , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , NAD/metabolismo , NADP/metabolismo , Fosforilación Oxidativa , Estructura Terciaria de Proteína , Transporte de Proteínas , Interferencia de ARN
16.
Mol Biosyst ; 6(9): 1640-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20379593

RESUMEN

The ER plays a fundamental role in storing cellular Ca(2+), generating Ca(2+) signals, and modulating Ca(2+) in both the cytosol and mitochondria. Genetically encoded Ca(2+) sensors can be explicitly targeted to the ER to directly define Ca(2+) levels and monitor fluxes of Ca(2+) within this organelle. In this study we use an ER-targeted Ca(2+) sensor to define both the level and dynamics of ER Ca(2+) in cells expressing mutant presenilin proteins. Growing evidence suggests the enigmatic presenilin-1 plays a role in regulating ER Ca(2+). Presenilin-1 was initially identified in a screen for genetic causes of inherited familial Alzheimer's disease (fAD). The connection between presenilin-1, calcium regulation, and Alzheimer's disease may provide the key to understanding the long-observed, but poorly understood, link between Alzheimer's disease and Ca(2+) dysregulation. In this study we examined seven fAD-causing mutations in presenilin-1 to define how they influence ER Ca(2+) levels and dynamics. We observed that some, but not all, mutations in PS1 decrease the level of Ca(2+) within the ER and this difference depends on the enzymatic activity of PS1. Two mutations tested altered the kinetics of Ca(2+) release from the ER upon ATP stimulation, resulting in faster spiking. Combined, these results indicate that mutations in PS1 can alter the balance of Ca(2+) in cells and have the potential to influence the nature of Ca(2+) signals.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Presenilina-1/metabolismo , Western Blotting , Humanos , Microscopía Fluorescente , Mutación , Presenilina-1/genética
17.
Methods ; 46(3): 152-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18848629

RESUMEN

Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Calibración , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Indicadores y Reactivos , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Orgánulos/metabolismo , Receptores Sensibles al Calcio , Transfección/métodos
18.
J Struct Funct Genomics ; 6(2-3): 143-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16211511

RESUMEN

The Center for Eukaryotic Structural Genomics (CESG) has established procedures for the purification of Arabidopsis proteins in a high-throughput mode. Recombinant proteins were fused with (His)(6)-MBP tags at their N-terminus and expressed in Escherichia coli. Using an automated AKTApurifier system, fusion proteins were initially purified by immobilized metal affinity chromatography (IMAC). After cleavage of (His)(6)-MBP tags by TEV protease, (His)(6)-MBP tags were separated from target proteins by a subtractive 2nd IMAC. As a part of quality assurance, all purified proteins were subjected to MALDI-TOF and ESI mass spectrometry to confirm target identity and integrity, and determine incorporation of seleno-methionine (SeMet) and (15)N and (13)C isotopes. The protocols have been used successfully to provide high quality proteins that are suitable for structural studies by X-ray crystallography and NMR.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/genética , Proteómica/métodos , Proteínas Recombinantes/aislamiento & purificación , Isótopos de Carbono/metabolismo , Cromatografía de Afinidad , Escherichia coli , Isótopos de Nitrógeno/metabolismo , Control de Calidad , Proteínas Recombinantes/metabolismo , Selenometionina/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...